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Theories of topographic surface development during ion bombardment fall broadly into 
two categories, one based upon erosion of intersecting planes [1] and the other on a 
point by point erosion basis r2-4]. A recent paper by Barber et alE5] has shown how, in 
semiquantitative fashion, an earlier theory by Frank [6] on chemical dissolution or growth 
of crystals, can be developed to encompass the ion sputtering case. This theory itself is 
based upon the kinematic wave equation outlined by Lighthill and Whitham [7, 8] and 
applies to problems of river flooding [7] and traffic flow [8]. In the present communication, 
the earlier topographic development theories are shown to fit precisely and analytically into 
the Frank development of the kinematic wave treatment and it is also shown how the 
occurrence of sharp angled cones formed on surfaces can be analytically and unequivocally 
predicted. 

1. I n t r o d u c t i o n  
It has been well known for a number of years 
that, during ion bombardment of the surfaces of 
solids, well-defined surface topographical 
features are developed. In crystalline solids these 
can usually be associated [9] with the generation 
of defects below but close to the surface and the 
interaction of the complex defect forms, which 
are produced, with the surface [10]. Even with 
amorphous solids, however, in which such 
interactions should not be present, regular 
features such as cones, pits and furrows are 
generated and it is generally believed that their 
development results from the fact that the 
sputtering rate is a non-monotonic function of 
the angle of ion incidence to each point on the 
surface. Such a non-monotonic dependence of 
sputtering rate upon angle of incidence has been 
well established for amorphous glass [11 ]. Two 
theories for the development of topographical 
features have been developed. The first by 
Stewart and Thompson [1 ] follows the rectilinear 
motion of a pair of intersecting surface planes, 
whilst the second by Carter et al [2-4] describes 
the differential motion of any point on a surface. 
These treatments are not exclusive and in fact 
lead to identical conclusions. 
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In a more recent semiquantitative analysis of 
the erosion by ion sputtering problem, Barber 
et al [5] have made use of the solutions to the 
formally identical problem of crystal dissolution 
by chemical etching evaluated by Frank [6]. 
Frank's treatment of this problem is based upon 
earlier work by Lighthill and Whitham [7, 8] 
who derived the kinematic wave equation relat- 
ing flux and concentration of a quantity when 
there exists a functional relation between these 
parameters. In the case of crystal dissolution the 
flux is equated to the rate of passage of crystal 
steps past a fixed point in space and is, therefore, 
clearly related to the removal of surface material 
or erosion and progression of a target surface 
during ion bombardment. 

In the present communication it is shown, 
analytically, how the earlier theories of topo- 
graphic development are complementary and fit 
within the theoretical framework of kinematic 
wave processes and their application to crystal 
dissolution processes. 

2. Theoret ica l  considerat ions 
2.1. The kinematic wave equation 
According to Lighthill and Whitham's argu- 
ments [7, 8], if a quantity (e.g. concentration) k 
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varies in space and time, and the flux of  this 
quantity is q, then in one dimension one can 
write: 

- dq. dt = dk .  dx or 

dq dk 
d-~ + d-t = O. (1) 

I f  the flux q is a function of k, then one can define 
a wave velocity C = [(Oq)/Ok[ ~ = constant which 
is to be compared with the point velocity 
v = q / k .  Multiplying Equation 1 by C = 
(Oq)/Ok leads to the relation 

dq dq 
d'--t + C ~  = 0 (2) 

which indicates that q is a constant for waves 
travelling past a point with velocity C. It is also 
evident that 

d 
C = (vk) = v + k d---k (3) 

Such kinematic waves are non-dispersive but 
can suffer changes of form due to non-linearity 
(i.e. dependence of C upon q) and discontinuities 
may develop due to interference between waves. 
These discontinuities may be regarded as kine- 
matic shock waves. If  on one side of the shock 
wave the values of k and q are kl and ql, and on 
the other side are k2 and q~, then if the velocity of 
the shock wave is U, then the quantity crossing 
the shock front per unit time is either qt - Ukt  
or q2 - Uk2 then 

q~ - q________l 
U = k2 - kl (4) 

I f  q is a function of x and t, only through its 
functional dependence upon k, then q is constant 
on waves of constant velocity C, which is given 
by the slope of the tangent to the q /k  function. 
Thus, in a space-time diagram, the waves of 
constant q (or k) are straight lines, parallel to the 
tangent of the q/k  characteristic. However, these 
tangents may intersect, and where they do so (on 
the space-time diagram) indicates the generation 
of a discontinuity or shock wave. At such a point 
a new wave of velocity given by Equation 4 
results. 

2.2. Application to crystal dissolution 
Frank [6] describes a crystal surface in terms of a 
succession of surface steps, and considers, during 
dissolution, the rate of passage of these steps past 
a fixed spatial point. If  k is the step density each 
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of unit height (number of steps per unit length 
in the x direction and thus analogous to concen- 
tration), and q is the rate of passage of steps past 
a fixed spatial point, in the y direction, and thus 
analogous to flux, then the slope of the surface 
at any fixed time is 

0y 
k =  Sxx = t a n 0  (5a) 

and the dissolution rate in the y direction is 

1 0y 
q = - 1 ~ /  �9 (5b) 

I f  the dissolution rate is a function of step 
density, then one can write as before (Oq)/Ok = C 
and Equation 1 as 

dq Ok Ok 
d-k  O--x + ~ = 0 

o r  

Ok Ok 
C . ~ x + ~  = 0 .  (6) 

Thus, in the (x, t) plane a point of given slope 
(k) moves with a constant velocity C = (Oq)/Ok = 
(dx)/dt along a straight line trajectory called a 
"characteristic". In the (x, y) plane 

d x ; ~  + 5 7 ~  

o r  

dy k q 
d'-~ = C (7) 

which shows that a point, of  given slope k (and 
hence given q and C) also follows a straight line 
trajectory since k - q /C is a constant for this 
point. 

Corresponding to the kinematic shock wave 
described earlier, when there is a discontinuity 
of  slope at a point, which geometrically defines 
an edge in two dimensions, the velocity is given 
by 

dx q ~ -  q~ 
dt k2 - kl 

and the trajectory of this edge is defined by 

dy kl - ql = k~ �9 
=  -71 

. . . . .  (8) 
The trajectory of this edge is not necessarily 
straight. 
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The dissolution rate measured normal to the 
actual macroscopic surface is q/(cosO) = 
q(1 + k2) -~ and the vector d whose magnitude 
is the reciprocal of this rate and the direction of 
which is normal to the macroscopic surface is 
given by 

d = q-1  (ki  - j) (9) 

where i and j are unit vectors in the x and y 
directions. 

If one plots the polar diagram of d as a func- 
tion of k, then the slope of the tangent to this 
polar diagram is 

'dk - Cq 2 k -  ~ i - j  . (10) 

According to Equation 7 the trajectory in the 
(x, y) plane of a point of given slope k is parallel 
to the direction, 

i + ( k -  q ) j  (11) 

which is clearly orthogonal to the direction of 
the tangent given by Equation 10. 

The meaning of this is that the direction of 
motion of a surface point of given orientation 
(tangential angle) is parallel to the normal to that 
point on the reciprocal normal dissolution rate 
polar diagram which has the same angle as the 
surface point considered. Frank enunciated these 
results in several theorems as follows: 
1. The locus of a point on the crystal surface with 
a given orientation is a straight line (Equations 6 
and 7) called a dissolution trajectory. 
2. If  the reciprocal of the dissolution rate normal 
to the surface is plotted in polar form as a 
function of surface orientation, then the traject- 
ory of a point on the crystal surface of a given 
orientation is parallel to the normal to the polar 
diagram at the point of corresponding orienta- 
tion (Equations 9, 10 and 11). 
A corollary to these theorems is that at a dis- 
continuity (an edge) the dissolution trajectory is 
parallel to the normal to the chord in the polar 
diagram joining the points corresponding to the 
orientations of points at either side of the edge 
(this follows from Equation 8). 

2.3. A p p l i c a t i o n  to sput ter ing 
Consider an element of surface AB shown in 
two-dimensional space in Fig. 1, exposed to a 
uniform flux of energetic ions r per unit area per 
sec incident in the 0y direction. One considers 
that erosion of this surface is due to removal, by 

ion flux density } /unit  area/see 
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surface contour 

/.~ at, t SUi'fQCE contour 
I ~/ /  c~t t + 8t 

/ /  

J/n s cos e sinO 

Figure 1 Erosion of a surface generator by an ion flux. 

sputtering, of surface atoms and that any result- 
ing changes in topography are due only to the 
macroscopic variations in the sputtering rate 
with angle of ion incidence 0 to the normal to 
the surface. Thus one excludes effects such as 
surface atomic migration, local non-uniformities 
of sputtering owing to impurities or only partial 
development of the ion generated displacement 
cascade near the surface, flow of atoms from 
below to the surface, etc. One defines the 
sputtering coefficient S as the number of atoms 
removed from the surface per incident ion, so 
that if the target density is n, the depth eroded 
normal to a surface, per incident ion per unit 
area is just Sin. The generally observed functional 
relationship between S(O) and 0 for an amorphous 
target in the range -~ r /2  < 0 < ~r/2 is that 
S(O) is symmetric in 0 about 0 = 0, experiencing 
a minimum value of S(0) at 0 = 0, rising to a 
maximum at 0 = ~_ 0 9 and declining to zero at 
0 = J= ~r/2. 

For the element AB in Fig. 1 the tangential 
angle increases from 0 at A to 0 + (DO/ax) dx at 
B, so that, in a flux of r ions per unit area per 
sec, the rate of erosion normal to the curve at A 
and B increases from (r S(O)cosO to 
(q~/n) S(O + dO)cos(0 + dO). The reciprocals of 
the ratio of those rates to the value at 0 = 0, is 
given by the form S(O)/(S cos 0) where S is 
written for S(O) and may be defined, following 
Barber et al, as the "erosion slowness" for a 
given orientation. By analogy with the chemical 

1475  



G. C A R T E R ,  J. S. C O L L I G O N ,  M. J. NOBES 

dissolution process, S(O)/(S cos 0) is the normal- 
ized normal recession rate of the surface. This 
function plotted in polar form, now allows 
deduction of the characteristic trajectories in the 
yOx plane, along which points of constant 
orientation move. This is effected by determining 
the normal to each point on the polar erosion 
slowness curve and allowing a point on the real 
surface, having an equivalent orientation, to 
move in a direction parallel to this normal and 
with a velocity determined (according to Barber 
et al) by the relative sputtering rate at that 
orientation. 

Barber et al have used these erosion slowness 
curves to follow, successfully, the progress of 
erosion of hemispherical protuberances and 
troughs and sinusoidal geometry features on a 
surface, using also, Frank's theorem that when 
trajectories intersect an edge (or shock front) is 
produced which follows a new trajectory parallel 
to the normal to the chord joining the original 
orientations on the erosion slowness curve. 

There can be no doubt that this treatment of 
the topographic development process is the most 
elegant reported to date. In fact, this treatment 
can be shown to include, within its framework, 
the earlier analyses reported by Stewart and 
Thompson and by Carter et al, and this we now 
propose to elucidate. In the Carter et al studies, 
the relative movement of the two points A and B 
to A' and B' respectively was considered as a 
result of sputtering for a time dt. Assuming that 
S increases with 0, BB' exceeds AA' by an 
amount (C/n)(d/dO) (S cos 0) (O0/~x) dt . dx which 
in Fig. 1 is equal to CA' where CA' is parallel to 
AB. If  the radius of curvature of AB is R, and 
the change in tangential angle from A to A' is 
dot, then it is readily shown from the triangle 
CA'B' that 

C d dt 
- dot = n ~  (Scos 0) ~ .  (12) 

However 

00 00 
dO = 7n dx + ~- dt (13) 

so that 

dO 0 0 t d  ~ [ 0 0  
d--/= Yx + ~- . (14) 

If the direction considered is along the normals 
at A or B, then (dx)/dt represents the time rate 
of change of the x co-ordinate of A, and is equal 
to (C/n) S cos 0 sin 0. Substitution of this expres- 
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sion into Equation 14 and subsequently combin- 
ing Equations 12 and 14 leads to the identity 
derived by Carter et al 

00 100 dS C 
~ = - [Sx t ~ c ~  ~0 . - .n  (15) 

Carter et al recognized that this defined a wave 
nature for variations of 0 with x and t, but did 
not associate this with the kinematic wave 
process outlined by Lighthill and Whitham. In 
terms of the kinematic wave equation, the mean- 
ing of Equation 15 now becomes clear in that it 
defines the motion of points of constant orienta- 
tion in x, t space. Thus 

x dx 0 C dS 
00 ~ - ~ - n d0C~ (16) 

Wx 

which indicates that the rate of motion of points 
of constant orientation in the x direction is equal 
to - (O/n)(dS/dO) cos 2 0. 

Equation 13 can equally be cast in terms of y 
co-ordinates by using the fact that the velocity of 
motion of the point A in the y direction is 
(C/n) S cos 2 0, thus an analogous equation to 
Equation 16 in terms o f y  can be derived, i.e. 

-~ j[ dY ~ C dS 
00 t = ~- = - n  d - - -0s in0c~  S �9 

. . . . .  (17) 

Thus the rate of motion of points of constant 
orientation in y, t space is 

C{  aS } 
n - ~ s i n 0 c ~  S . 

Division of Equations 16 and 17 yields the 
slope of the trajectory in (x, y) space, of points of 
constant orientation, i.e. 

dy [ (dS/dO) sin 0 cos 0 - S 
(18) 

dx [o = (dS/dO) cos 2 0 

The polar plot of S(O)/(S cos 0), is effectively a 
Cartesian plot of S(O)/S as a function of (S(O)/S) 
tan 0 and it is readily shown that the slope of the 
normal to this curve is 

d(tan O/S) _ ~(dS/dO) sin 0 cos 0 - S ]  
d(1/S) ( ~-S~0)--c-oos 2 0 f " 

This establishes the fact that the trajectory of 
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Figure 2 The non-normalized erosion slowness curve, depicting the direction and velocity of motion of a point P 
at orientation 0 and the direction of motion of an edge, following the intersecticn of two point trajectories. 

points of constant orientation on the sputtered 
surfaces is parallel to the normal to the polar 
erosion slowness curve. 

It  is important  to note that the Barber et al 
result, derived from Frank's  earlier treatment, is 
based upon motion of  surface steps, i.e. effectively 
considering finite motion whereas the present 
treatment has considered infinitesimal point by 
point or continuum motion of a curved surface. 
It is encouraging that the results are identical, 
and in fact must be expected to be so since both 
treatments clearly lie within the framework of  
the kinematic wave theory. In this respect one 
identifies the velocity 

( c= =-d7 ~ 

from Equations 2 and 16 as (dS/dO) cos 2 0.  
The spatial velocity of points of constant 

orientation is given, from Equations 16 and 17 as 

+ = 

_~'(dS )3 ( a s ) e } ~ .  
n [ \ d O s i n O c ~  S + d-0C~ . 

(19) 

I f  one plots, as in Fig. 2, the non-normalized 
erosion slowness curve (i.e. ( I /S  cos 0) in polar 
form, or 1IS as a function of (1/S)tan 0 in 
Cartesian form), then the vector OP  to a point 
of  given orientation is the reciprocal of the 
velocity of the point normal to the real surface at 
that orientation. Constructing the tangent to P 
and forming the normal to this tangent from the 

origin, then the length of this normal O N  is given 
by 

O N =  OP cos (90 - c ~ -  O) 

where ~ is defined in Fig. 2 as the slope of the 
normal at N and thus at P. Since 

t a n  ~ = 

and 

(dS/dO) cos 2 0 

- (dS/dO) sin 0cos 0 +  S 

1 
OP 

S cos 0 

it is readily shown that 

O N  = {[(dS/dO) sin 0 cos 0 - S] 2 + 

[(aS/dO) cos ~ 012} -~ . (20) 

Identifying Equations i9 and 20 indicates that 
the reciprocal of the spatial velocity of  points of  
constant orientation is proportional to the length 
of  the normal from the origin of  the erosion slow- 
ness curve to the tangent at the point of  constant 
orientation considered. 

This result, which was not given by Barber et 
al, indicates that, in obtaining the actual time 
progression of a sputtered surface, not only is the 
direction of motion of constant orientation 
defined by the normal to the erosion slowness 
curve, but also the actual velocity of  these points 
is defined by the reciprocal length of the normal 
from the origin of the erosion slowness curve to 
the tangent at the orientation considered. The 
extreme value of the erosion slowness curve 
becomes even more evident. 
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Lighthill and Whitham, Frank and Barber 
et al showed that when the constant orientation 
trajectories intersect, a new edge trajectory ensues 
with a direction of motion parallel to the normal 
to the chord joining the original points of 
constant orientation on the erosion slowness 
curve. This is illustrated in Fig. 3 for two points 
P~ and P2 on the erosion slowness curve. I f  ON 
is now drawn as the normal from the origin to 
the chord P1P 2 then the above authors suggest 
that this defines the direction of motion of the 
edge produced when the trajectories of the points 
on the real sputtered surface, corresponding to 
the orientations at P1 and P2 intersect. I f  the 
co-ordinates of the points P1 and P2 are (tan 01/S 1, 
1/$1) and (tan OJS~, USe) then the slope of the 
normal ON is given by 

3(1/S tan 0) S~ tan 02 - $2 tan 01 
- ( 2 1 )  

~(1/S) (Sz - SO 

Stewart and Thompson considered the sputtering 
erosion of two infinite intersecting planes, 
inclined at angles 01 and 0 2 to the x-axis and 
showed that the direction of motion of the inter- 
section, was given by 

dy {S l  tan O~ - S2 tan 01} . (22) 
d--x = t a r i f f=  - (S~ S 0 

One can readily identify Equations 21 and 22 so 
that it is clear that the direction of motion of the 
intersection of sputtered planes is totally identical 
to the direction of motion of the edge trajectory 
in the treatment of Frank and Barber et aL 

Furthermore Stewart and Thompson show 
that the velocity of the intersection point v is 
given by the relation 

1 n 1 
v = 3" $1 cos 01 cos(/3 - 0 0 .  (23) 

Referring to Fig. 3 it is evident that 

1 
ON = $1 cos 0-----~ cos(/3 - 01) 

thus one identifies the reciprocal of the length 
ON with the velocity of the edge (or intersection). 
Clearly this normal relaxes to the normal to the 
tangent at a point P when the points P1 and Pz 
coincide. 

It is interesting that this result is also readily 
derivable from Equations 7 and 8 for the 
dissolution process. From these equations, by 
division, it is found that 

dy qlkz ] _~ __ q2kl -- 
k2 - k l  o 

so that the velocity of an edge characteristic 
trajectory is given by {dx: id  ;}0 

Y/ + d7 = 

{(q2 - ql) 2 + (q2kl - qlke)~} �89 �9 (k2 - ka) -1 �9 
n 

(24) 

In the dissolution process, q, is the rate of passage 
of steps (of unit length) past a fixed x co- 
ordinate point, and so in the analogous sputter- 
ing process q is equated to the equivalent 
distance moved by the surface in the 0y direction 
for a given x co-ordinate. Referring to Fig. 1, 
since the point A moves to A', a distance (dp/n) S 
cos 0 dt, the movement of the surface below A is 
to D where 

70... 

80~ 

5O \ 

6% 

2 0  \ 
30 

\ 

40 
N 

9 0  

o t0 t0 

ion beam 

2O / 
30  
/ 

4 0  
/ 

. J  

so / -~ .  
/ 

6o / "  

t 7 o /  
/ "  extrapolated curve 

s /  for the region t9 
between 80  ~ & 9 0  ~ 

to exhibit S(19~)=S(O) 

t/s Lan19 

Figure 3 The non-normalized erosion slowness curve, depicting the direction of motion and velocity of an edge. 
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ADcosO = q ~ S c o s 0 d t  
n 

Thus the rate of motion of the surface, at fixed x, 
in the y-direction is (q~/n) S, so one identifies q 
with this quantity and k is already defined in 
both the step and continuum cases as equivalent 
to tan 0. The velocity of an edge is thus given by 

v = - {($2 - $1) 2 + ($2 tan 01 - $1 tan 02)2} .�89 
n 

tan 0 2 - t a n 0 1 - 1 .  (25) 

Referring again to Fig. 3 

c o s  ( /3 - 01)  
O N -  

S 1 c o s  01 

(cos/3 - sin/3 tan 01) 
$1 (26) 

Substituting for sin/3 and cos/3 from Equation 21 
for the slope of the normal (tan/3) it is readily 
shown that 

ON = {(S~ - SO 2 + ($2 tan 01 - S1 tan 02)2} �89 
(tan 02 - tan 01) 

again showing that ON is indeed proportional to 
the reciprocal of the edge velocity v. I f  one 
proceeds to the limit where 02 - 01--~ S0 and 
$2 - $1 --~ ~S it is again readily proved, from 
Equation 25, that the velocity v is given by 

q~ { ( d S  )2 _ {dS 2 ) 2 }  �89 
V = - n  ~ s i n 0 c ~  S + ~,d-OC~ 0 

the result already given in Equation 19. 
One, therefore, concludes that the continuum 

approach of Carter et al and the intersection 
plane approach of Stewart and Thompson both 
fall within the general framework of Barber et al's 
extension of the Frank theory of crystal dis- 
solution. It also becomes evident that the use of 
the erosion slowness curve provides a very 
elegant and straightforward method of determin- 
ing the spatial progress of points of constant 
orientation on a sputtered surface, since not only 
are the directions of motion of such points 
determined to be parallel to the normal to the 
erosion slowness curve at the corresponding 
orientation, but also the velocity of such points 
is determined by the reciprocal length of the 
normal from the origin to the tangent to the 
erosion slowness curve at that orientation. 
Furthermore, when trajectories of the surface 
points intersect, an edge forms, the velocity and 
direction of motion of which are now given by the 

normal from the origin to the chord joining 
corresponding orientations on the erosion slow- 
ness curve. 

As noted earlier, Barber et al have applied the 
erosion slowness curve to determine the topo- 
graphical changes in various surface forms. In 
particular it was shown that a hemispherical 
surface protuberance developed a conical form, a 
hemispherical hollow develops into a flat- 
bottomed cylinder, a hollow of the shape of the 
cap of a hemisphere tends to enlarge along the 
surface plane but becomes shallower, finally 
disappearing so that a flat surface develops, 
whilst it was also suggested that a sinusoidal 
topographic feature also developed towards 
planity. All these developments are readily 
explained in terms of the erosion slowness curve 
and the behaviour of the normals at each point 
on this curve, but Barber et al appear to have 
missed the significant behaviour of a particular 
point on the erosion slowness curve, where 
0 = _k 0p, the points of maximum sputtering 
coefficient in the S/O function. One notes in Fig. 2 
that all inward drawn normals will have points of 
intersection provided that 0 < • 0m, where 
4- 0m are the values of 0 for which the normals 
are mutually parallel to the 1/S axis. For values 
of 0 > • 0m, the normals always diverge but 
intersect with the normals for 0 = 4- ~r/2. The 
significance of this behaviour is that for all 
orientations 0 < 4- 0m on a real surface with 
angles symmetrically distributed about 0 = 0 
(which is true for the hemispherical protuberance 
and sinusoidal cases treated by Barber et al), 
edges will develop, in such a manner that for a 
protuberance the smaller 0 values disappear first 
and the larger 0 values disappear last. The value 
of 0 = 4- 0m cannot disappear at all, however, 
since no other normal (even a chord normal) from 
0 = 0 to 4- 0m can intersect this. Consequently, 
the 0 = 4- 0m configuration increases in import- 
ance and a conical shape develops. 

The value of 0 = 4- 0m is determined when 
the slope of the tangent to the erosion slowness 
curve 

d(S(O)/S) 
d(S(0) tan O/S) 

is zero, i.e. when 

(dS/dO) cos 2 0 
= 0 .  (dS/dO) sin 0 cos 0 - S 

This gives the conditions dS/dO = 0, cos 0 = 0 
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(0 = rr/2). The sputtering coefficient S as a 
function of 0 characteristic exhibits values of 
dS /dO=O at 0 = 0  and 4-0p. One readily 
identifies, therefore, 0p with 0m, with the con- 
comitant result that cones of half angle 
~r/2 - 0 v will develop upon a surface possessing 
protuberances in which 0p exists. This latter 
qualification is crucial since the erosion slowness 
curve shows that no orientations greater than the 
initial orientations can ever ensue, thus cones of 
half angle 7r/2 - 0 v can only develop provided 
that there exists a 0p value in the initial surface 
contour. This growth of cones of half angle 
7r/2 - 0 v has already been inferred in the work of 
Stewart and Thompson and Carter et al but it 
had not been previously possible to determine 
quantitatively the conditions for such growth. 

The result which identifies 0m with 0 v can also 
be readily derived by noting that 0m occurs 
where there is no change of 1/S (the Cartesian y 
co-ordinate) with polar angle 0, i.e. 

d(1/S) 
- 0  

dO 

which again leads to the condition dS/dO = O, 
and defines the motion of the 0p orientation as 
parallel to the ion beam (0y) direction. Of course, 
a further angle, of some significance, exists, in 
which there is no motion parallel to the 0y 
direction, and which is defined where the 
tangent to the erosion slowness curve is parallel to 
the 0y direction. This condition is met by the 
statement that d(tan O/S)/dO = 0 indicating that 
if such a condition is satisfied on the erosion 
slowness curve and such orientations exist on a 
real surface, there will only be motion of these 
orientations perpendicular to the direction of ion 
incidence. 

In the case of hemispherical or hemispherical 
cap depressions in a surface, the direction of 
motion of characteristic trajectories of current 
orientations is (as shown by Barber et al) to be 
along the outward drawn normals from the 
erosion slowness curve. In such cases the edge 
trajectories develop first for larger values of 0 
and if 0 > 4- 0m the tendency is to eliminate the 
smaller values of 0 and a movement towards the 
largest values of 0 = 4- 7r/2 is experienced. For 
orientations 8 < 4- 0m(= 4- 0p) the trajectories 
do not intersect until they approach the 0 > 4- 0 
trajectories and eventually the 0 = 4 - r  r/2 
trajectories. The result is, therefore, that the 
smaller orientation parts of the curve grow most 
ranidly at the expense of the larger orientations 
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and only the 0 = •  r/2 angle cannot be 
eliminated and so either a single value of 0 = 0 
or a combination of 0 = 0 and 4- rr/2 for which 
there is no intersection of the normals results. 
This is the case of the hemispherical trough 
treated by Barber et al, in which all 0 values 
between 4- ~r/2 are included and the form of 
development is towards a flat base cylinder with 
0 = 0 and 0 = 4- rr/2 whereas for the hemispher- 
ical cap trough for which the values of 4- rr/2 
were not included, there was no development 
towards vertical generators, only a gradual 
elimination of all the large angle orientations until 
a flat surface ensued. If, however, values of 
~r/2< 0 < 0m were also included in the initial 
topography, it would be expected that these 
angles would relax, by intersection, towards the 
0 = ~r/2 geometry. 

In the sinusoidal case treated by Barber et al, 
the angles 4- 0p were not included in the positive 
half of the sinusoid nor could the ~ 7r/2 values 
be included in the negative half of the sinusoid. 
Consequently, the final form of the development, 
as suggested by Barber et al, must be a polished 
flat surface in the O X  plane. However, Barber 
et al do indicate that during erosion of the sinu- 
soid, the positive half cycle develops a triangular 
shape (a conic section in three dimensions) whilst 
the negative half assumes a flattened shape. 
Further they suggest that if a section develops for 
which the erosion of all points in the 0y (beam 
direction) is constant, an equilibrium form can be 
achieved. Such a form would ensue when the 
positive half of the cycle formed a triangle of 
half angle 7 r / 2 -  0* where 0* is such that 
sputtering coefficient is equal to S(0). The apex 
of this triangle is then an edge which moves in the 
0y direction with velocity S(0) since the orienta- 
tions of the sides of the triangle are 4- 0* and so 
the chord joining the equivalent orientations in 
the polar erosion slowness curve is parallel to the 
0 = 7r/2 orientation (i.e. parallel to the 
S(0) tan O/S axis in Cartesian co-ordinates) and 
the length of the normal to this chord is just S(0). 
In addition, at the feet of the triangle where the 
inclined faces meet the flat (0 = 0) plane, the 
edges formed here also move in the 0y direction 
only, since the chords joining the 0 = 0 and 
0 =  4-0"  are again parallel to the 0 = 7 r / 2  
direction and the normal from the origin to the 
chord again equals S(0). A triangle of half angle 
7 r / 2 -  0* together with a flat surface was 
observed to develop in computer simulations of  
the sputtering of a sinusoid by Catana et al in a 
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case where the orientation 0m* was included in 
the sinusoid. It should be noted however, that 
it is now believed that the topography actually 
determined in those simulations was somewhat 
artificially produced because the apex of the 
upward sinusoid always sputtered with a value 
S(0) and not, as has been shown in this paper, a 
value corresponding to the planes which include 
the apex. In Barber et al's case the 0* orientation 
was not included so that no triangle flat configur- 
ation would develop. 

This example of topographic development 
illuminates a general rule for the generation of an 
equilibrium contour which is that for all points 
on the contour, or all edges, both the direction of 
motion and velocity must be constant. This 
means that on the polar erosion curve, the 
normals from the origin to the tangents or 
chords of corresponding orientations must be of 
equal length and parallel. Thus the only orienta- 
tions which could co-exist in equilibrium with a 
0 = 0, flat plane are 0 = • 0* orientations and 
0 = 4- 7z/2. A topography consisting of a cone 
with a generator at 0 = • Op and a flat surface 
is not in equilibrium, since the erosion rate at the 
apex (S(Op)) is different from that at the foot 
(obtained by drawing the normal from the origin 
to chord joining the 0 = 0  and 0 =  4-00 
orientations on the polar erosion curve). 

3. Conclusions 
It has been shown that the theories of topographic 
surface development proposed by Stewart and 
Thompson (intersecting plane model) and Carter 
et al (differential surface recession model) can be 
fitted within the general technique using erosion 
slowness curves developed by Barber et al from 
Frank's treatment of crystal dissolution. It has 
been further shown that the erosion slowness 

curve not only defines the direction of motion of  
points of constant orientation on the sputtered 
surface, but that also the velocity of such points 
is also readily derived. 

The important role of the angle at which 
maximum sputtering occurs has been analytic- 
ally determined as have the conditions for 
equilibrium topographies involving a combina- 
tion of surface orientations. 

It seems that, in view of the many other 
processes involved in topography development, 
which have been ignored here, the erosion 
slowness curve and its application represents as 
elegant a technique for following surface erosion 
by sputtering as should be developed. 
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